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Let K be a commutative ring with identity and let A be a K-algebra. The algebra 
A is said to be K-separable if A is projective over its enveloping algebra A OK AoP. 
Examples of K-separable algebras include the n x n matrix algebra M,(K) with 
entries in K as well as group algebra KG where G is a finite group with its order 
invertible in K (see, e,g., 131). Since the class of K-separable algebras are closed 
under finite products and that K-separability is invariant under Morita equivalences 
one sees that the algebra 

is K-separable if Gi is a finite group with its order invertible in K. 
In this paper we show that every K-separable semigroup algebra KS, S a 

semigroup, must be of this form. Furthermore we characterize all semigroups S with 
their semigroup algebras KS separable over K. 

In Section 1 we recall some results from semigroup theory. In Section 2 semi- 
simple semigroup algebras are characterized. In Section 3 we prove the main result. 

1. Preliminaries 

In this section we shall recall some notions as well as results in semigroup theory 
which are needed in the paper. The interested readers should consult [2] for more 
complete presentations. 

Let S be a semigroup. A subsemigroup of S is a nonempty subset of S which is 
closed under the itlduced multiplication. If it is a group, then we shall call it a 
subgroup of S. Note that the identity of the subgroup may not be that of S even 
if the latter exists. An ideal I of S is a nonempty subset closed to left and right 
multiplication by elements of S. In this case one may define a congruence relation 
-: x-y if and only if either x=y or both x and y are in I. The factor st ,,\iigroup 
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S/- is called the Rees factor semigroup of S module I and is denoted by S/I. A 
semigroup is simple if it does not have any proper ideal. 

A zero element of S is an element e such that xe= ex=e for every x in S. Thus 
{e} is an ideal of S and is called the zero ideal. Note that if I is an ideal, then S/I 
has a zero element, namely, the congruence class 1. A semigroup S with a zero 
element e is O-simple if S has no proper ideal strictly containing e and S* +e. If 
S* = e, then S is called a zero semigroup. 

Lemma 1. Suppose S is a nonzero semigroup with zero element e. Then S is O-simple 
if and only if SxS= S for every nonzero element x of S. 

Proof. We only prove the ‘if’ part since that is all we need in the paper. Let I be 
a nonzero ideal of S, and let a E I such that a + e. Then S = SaS c SIS c I and so I = S. 
Suppose x is a nonzero element of S. Then S = SxS c S2 and so S2 #e since S #e. 

Let G be a group. We shall denote by Go the semigroup obtained by adjoining 
a zero element to G. Let P be an n x m matrix with entries in Go. Then the Rees 
matrix semigroup &‘(G; m, n; P) is defined to be the set of all m x n matrices with 
entries in Go such that at most one entry is nonzero. The multiplication is defined 
by A oB=APB for A, B in d”(G; m, n; P). Note that the zero matrix is the zero 
element. 

Proposition 2 (Rees [6]). If S is a finite O-simple semigroup, then S is isomorphic 
to &‘(G; m,n; P) where G is a subgroup of S. 

Remark. If S is a finite simple semigroup, then, by adjoining a zero element to S, 
one deduces from the above proposition that S is isomorphic to -/(O(G; m, n; P) - 0 
where 0 denotes the zero matrix. We shall denote this simple semigroup by 
d(G; m, n; P). 

Let S be a semigroup with zero. An ideal I of S is O-minimal if the only ideals 
of S contained in I are I and the zero ideal. 

Lemma 3. Suppose I is a O-minimal ideal of S. Then I is either a zero or a O-simple 
subsemigroup of S. 

roof. Suppose I2 #cc. Since I2 is an ideal of S contained in I, I* = I by the 
0-minimahty of I. Let x be a nonzero element of I and let (x) be the ideal of S 
generated by x. Then I = (x) and so I= I 3 = I(x) I G Ixl~ I. Therefore I is O-simple 
by Lemma 1. 

Let S be a semigroup. A principal series of S is a finite decreasing sequence of 
ideals Si, i=l,2 ,..., n, of S 



Separahie semigrolrp algebras 153 

S=S,>S~~*~~>S,,>S,,+, =0 

such that there is no ideal strictly between Si and SitI for i= 1,2, . . ..n. It is not 

hard to see that if S has a zero element e, then Sn =e and that every finite 
semigroup has a principal series. Since each S/S,. + 1 is a O-minimal ideal of S/S; + 1, 

it is either a zero or a O-simple semigroup by Lemma 3. Here we adopt the conven- 
tion that S/0 = S. 

2. Semisimple semigroup algebras 

Throughout R will be a ring with identity and S will be a semigroup. We shall 
denote the semigroup algebra of S over R by RS. 

If S is a semigroup with a zero element e then the contacted semigroup algebra 
of S over R is defined by 

ROS = RS/Re. 

If I is an ideal of a semigroup S, then it is easy to show that the contracted 
semigroup algebra of the Rees factor semigroup S/I over R is simple RS/‘RI. 

Proposition 4 (Munn [S]). Suppose S = I #‘(G; m, n; P). 
(a) If DOS has an identity where D is a division ring, then P is invertible over 

DC and m=n. 
(b> If P is invertible over RG and m = n, then RoS is isomorphic to the m x m 

matrix algebra M,,,(RG j over RG. 

Lemma 5. Let R G Xj M/,(Dj), a finite product of matrix rings over rings 4,. Let S 
be a semigroup and let P be an n x n matrix over RS with entries either 0 or elements 
of 5. If P is invertible over each DjS, then it is so over RS. 

Proof. Observe that if Ts T, x T2 x l x Trill is a finite product of rings, then 
M,(T) Z Xj M,(q). This implies that an element of M,(T) is invertible if and only 
if its images under the natural projections nj: M,(T)+M,(7J are invertible. 

Since RSs X,[M,,(Dj)S], it is enough to assume that R -M,(D) and that P is in- 
vertible over DS. In this case the result is clear since D can be embedded in M,(D) 
via d-d1 where 1 denotes the identity matrix. 

Lemma 6. Suppose A is a ring not necessarily with kn identity and B is an ideal of 
A. Then A is semisemiple if and only if both B and A/B are. In this case 
AsBxA/B. 

roof. This follows from the definition of the semisimple algebras and the Wedder- 
burn-Artin theorem. 
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Proposition I (Zel’manov [9]). If RS is artinian, then R is artinian and S is finite. 

Theorem A. Let S be a semigroup with a zero element. The following are equivalent. 
I( 1) RS is semisimple. 
(2) R is semisimple and S is finite with a principal series 

such that Si/Si+ 1 s I d’(Gi; mi, mi; Pi) where Gi is a subgroup of Si/Si + 1 with its 
order invertible in R and where Pi is invertible over RGi for i = 1,2, . . . , n - 1. 

(3) R is semisimple and RSZ (X:-I; Mm,(RGi)) x R. 

Proof. (1) * (2). Since RS is semisimple, R is also. Thus R z Xi Mli(Di) where Di is 
a division ring. Now RSZXi[M/i(Di)S] and SO M,,(Di)S is semisimple. But the 
latter is isomorphic to M,,(DiS) and, thus, is Morita equivalent to DiS. Hence DiS 
is semisimple, and so, by Proposition 7, S is finite. Let D = Di and consider a prin- 
cipal series of S as shown in (2). By Lemma 6 and induction, Do(Si/Si+ 1)s 
DSi/DSi..+ 1 is semisimple for i = 1,2, ..* p n. If Si/Sii. I is a zero semigroup, then 
D(Si/Si+ 1) is a zero ring, a contradiction. Thus Si/Si+ l is O-simple and SO, by Pro- 
position 2, SiISi+l z ,rYO(Gi; mi, ni; Pi). Since Do(Si/Si+ 1) has an identity, Pi is in- 
vertible over DGi and mi = ni by Proposition 4(a). Now Lemma 5 implies that Pi is 
invertible over RGi. 

(2) * (3). Proposition 4(b) implies that Ro(Si/Si+ I) z Mm,(RGi). Since semisim- 
plicity is invariant under Morita equivalences, Ro(Si/Si+ 1) is semisimple by 
Maschke’s theorem. Using Lemma 6 we see that RS is semisimple and 

RSz (RS, /R&J x 0.. x (RS,, _ I /RS,) x RS,, 

n-l 

= R,(S, /S2) x ... x Ro(Sn_I/S,) x RSns X Mm,(RGi) X R. i=l 1 
Note that Sn = e, since S has a zero element e. 

(3)=(l). By Maschke’s theorem, RGi is semisimple. Since semisimple rings are 
closed under finite products and are invariant under Morita equivalences the result 
follows. 

Remarks. (1) If S has no zero element, then one may adjoin a zero element to S 
without affecting the semisimplicity of S. The result below may then be deduced 
from Theorem A. 

heorem A’. Suppose S is a semigroup without a zero element. Then the following 

are equivale, y t . 
(1’) RS is semisimple. 
(2 ‘) R is semisimple and S is finite with a principal series 
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such that 
Si/Si+ ) Z s R’(Gi; mi,mi; Pi) for i= 1,2, . . . , n - 1 

z . /c(Gi; /ni, mi; Pi) for i = n, 

where Gi is a subgroup of Si/Si+ 1 with its order invetible in R and where Pi is in- 
vertible over RGi. 

(3 ‘) R is semisimple and RSZ xy=, M”l,(RGi) where Gi is a finite group with its 
order invertible in R. 

(2) Theorem A was proved by Munn [5] in case R is a field. 

Corollary 8. Suppose S is a commutative semigroup. Then RS is semisimple if and 
ody if S is a union of finite abelian groups whose orders are invertible in R, anu’ 
R is semisimple. 

3. K-separable semigroup algebras 

Throughout K will denote a commutative ring with identity. 

Lemma 9. Suppose A is a separable K-algebra. Then any left A-module which is 
K-projective is A-projective. 

Proof. See 13, page 481 or [7, page 131. 

Proposition 10. Suppose A is a finitely generated K-algebra. Then A is K-separable 
if and only if AMA is KL.4 K-separable for all maximal ideals . // ojm K. 

Proof. See [3, page 721. 

Lemma 11. Suppose B is an ideal of a ring A with identity. Suppose B is a ring with 
identity and that A/B is left A-projective. Then A s B x A/B as rings. 

Proof. Consider the exact sequence 

Since A/B is A-projective n splits and so p splits. Let 71’ be a splitting map for 
,u, and let z’( 1) =e. Then it is not hard to see that B is the left ideal of A gener- 
ated by e and that e is the identity of B. Thus 7~’ is a ring homomorphism since 
Y(aa’) = aa’e ‘= aea’e = n’(a)n’(a’). Hence there exists a ring homomorphism 
@ = A-+B x A/B defined by @(a) = (n’a, za). It is routine to check that this is indeed 
an isomorphism. 
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Proposition 12. Let R be a ring with identity and let K be a subring contained in 

the center of R such that R is finitely generated over K. Then P E M,(R) is invertible 
if and only if TC,& PE M,(R/../fR) is invertible for all maximal ideals . // of K. (Here 
Q : M,-,(R)+M,(RUR) is induced by the ccmonical projection R-+R/.kR.) 

Proof. We only prove the ‘left invertible’ part, the ‘right invertible part’ is similar. 
Consider the following diagram of functors 

M,(R)-Mod 

I 

Z 

* R-Mod 
@ 

I 
F I I 6 

M,,(R/. RR)-Mod -R/. [R-Mod ; 
4 

(1) 

where 

F= Mn(R/.//R) @ - , and G = (R/.&R)@ - . 
M,,(R) R 

By the associativity of tensor products, diagram (1) is commutative. It is not hard 
to show that @ and @# are equivalences of categories. 

Suppose P is not left invertible over R. Let J be the left ideal of M,(R) generated 
by P. Then A = Mn(R)/J+ 0. Therefore @(A) +O. Since A is finitely generated over 
M,(R), #(A) is finitely generated over R. Since R is finitely generated over K, so 
is @(A). Now that @(A)#O, we have that @(A),, #O for some maximal ideal . ti of 
K. By Nakayama’s lemma, (@(A)/.A(@(A))., = @(~l),&?#(,4),~ #O. Thus 

G@(A) = (R/. /1R) @I @(A) z @(A)/.,//@(A) # 0 
R 

and so, by the commutativity of (l), 

O+F(A) = Mn(R/.cHR) @ A Z Mn(R/.///R)/M,(R/..IR)J. 
M,(R) 

However, z,~PEM,(R/.~R)J and so n/,P is not left invertible over R/./R. 
The other direction is obvious. 

Let S be a semigroup with a zero element such that KS has an identity. 
Then the folIowing are equivalent. 

(1) KS is K-separable. 
(2) S is finite with a principal series 

such that the Rees factor semigroup Si/Si+ 1 is isomorphic to the Rees matrix 
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semigroup .IQ(Gi; mi,mi; Pi) where Gi is a subgroup 
vertible in K and where Pi is invertible over KGi, i = 

(3) KS z (XyL; Mn,,(KGi)) x K. 

157 

of Si/Si.+ 1 with its order in- 
192 9 a-0 9 n- 1. 

Proof. (1) * (2). By Proposition 10, KS is K-separable if and only if 
(K/..#)SZKS/.A’(S is KL&eparable for every maximal ideal ._d of K. This, in turn, 
is equivalent to saying that (K/..H)S is semisimple for every .k. Theorem A, then 
implies that this is equivalent to Si/Si+ 1 s L A/O(Gi; mi, mi; Pi) where Gi has its order 
invertible in K/J and where Pi is invertible over (K/,d)Gi for every ..,/(. If the 
order of Gi is not invertible in K, then it is contained in a maximal ideal .,/( of K 
and SO is zero in K/J, a contradiction. Hence, using Proposition 12 with R = KGi, 
we see that the result follows. 

(2) * (3). By Proposition 4(b), Ko(Si/Si+ 1) s M,,(KGi) for i = 1,2, . . . , n - 1, and, 
since S, = e, KS, = K. Using Lemmas 9 and 11 as well as the implication (2) * (1) we 
see that 

KSz (KS1 /KS*) x .=. x (KS,, _ 1 /KS,,) x KS,, z 
( 

n-l 
x M,,,(KG;) x K. 

i= I 3 

Remark. As before, if S does not have a zero element, then one may add a zero 
element to S without changing the K-separability of KS. As a result one may deduce 
from the above theorem the necessary and sufficient conditions for KS WI be K- 
separable in case S has no zero element. 

Corollary 12. Let S be a semigroup with a zero element such that ZS has an identity. 
Then the following are equivalent. 

(1) ZS is E-separable. 
(2) S is finite with a principal series 

such that Si/Si+ 1 E c Af '(1; mi, mi; Pi) where Pi is invertible over Z. 
(3) ZS= (x;:,’ M,,(H)) x Z. 

Corollary 13. Let S be a commutative semigroup with a zero element such that ZS 
has an identity. Then the folio wing are equivalent. 

(1) ZS is Z-separable. 
(2) S is finite such that every element is an idempotent. 
(3) zss x;;, z. 

Remark. Shapiro [8] has proved, essentially, Corollary 12. However his proof 
depends on the iz:LOt that Z.-projective algebras which are E-separable are direct pro- 
ducts of matrix algebras over Z. This fact was established using the fact that the 
Brauer group of 22 is zero and that Z is separably closed. 
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